Telegram Group & Telegram Channel
Forwarded from Data Science Archive (小熊猫)
说到特征降维/选择的问题,大部分EDA的套路都是从model训练的loss来判断feature importance。其实有一个简单易行而且很有效的办法是在CV里面用做feature permutation,对原始特征shuffle得到shadow(也可以加一些噪音),在通过zscore比较两者差异来判断importance,不断遍历筛选。在ESLII中593页有提到这个办法。R里面有一个包Boruta可以做这件事,py也有:https://github.com/scikit-learn-contrib/boruta_py



tg-me.com/DataScienceArchive/114
Create:
Last Update:

说到特征降维/选择的问题,大部分EDA的套路都是从model训练的loss来判断feature importance。其实有一个简单易行而且很有效的办法是在CV里面用做feature permutation,对原始特征shuffle得到shadow(也可以加一些噪音),在通过zscore比较两者差异来判断importance,不断遍历筛选。在ESLII中593页有提到这个办法。R里面有一个包Boruta可以做这件事,py也有:https://github.com/scikit-learn-contrib/boruta_py

BY Data Science Archive




Share with your friend now:
tg-me.com/DataScienceArchive/114

View MORE
Open in Telegram


Data Science Archive Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Data Science Archive from it


Telegram Data Science Archive
FROM USA